计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (16): 137-141.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

改进的F-score算法在语音情感识别中的应用

叶吉祥,王聪慧   

  1. 长沙理工大学 计算机与通信工程学院,长沙 410114
  • 出版日期:2013-08-15 发布日期:2013-08-15

Application of improvement of F-score algorithm in speech emotion recognition

YE Jixiang, WANG Conghui   

  1. Department of Computer & Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Online:2013-08-15 Published:2013-08-15

摘要: 针对F-score特征选择算法不能揭示特征间互信息而不能有效降维这一问题,应用去相关的方法对F-score进行改进,利用德语情感语音库EMO-DB,在提取语音情感特征的基础上,根据支持向量机(SVM)的分类精度选择出分类效果最佳的特征子集。与F-score特征选择算法对比,改进后的算法实现了候选特征集较大幅度的降维,选择出了有效的特征子集,同时得到了较理想的语音情感识别效果。

关键词: 特征选择, F-score, 互信息, 支持向量机, 语音情感识别

Abstract: For the F-score feature selection algorithm can not reveal the mutual information among features, the method of removing the redundancy is applied to improve the F-score algorithm. Using the German emotional speech database EMO-DB, based on the extraction of speech emotion features, the paper uses the classification accuracy of SVM to choose the best feature subset. Compared with the F-score method, the improved feature selection algorithm can achieve dimension reduction substantially, select an effective feature subset, and obtain an ideal speech emotion recognition accuracy.

Key words: feature selection, F-score, mutual information, Support Vector Machine(SVM), speech emotion recognition