计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (14): 199-202.

• 图形图像处理 • 上一篇    下一篇

基于分块Gabor特征的贝叶斯人脸识别

牛丽平,郑延斌,曹西征   

  1. 河南师范大学 计算机与信息技术学院,河南 新乡 453007
  • 出版日期:2013-07-15 发布日期:2013-07-31

Block-based Gabor transform for Bayesian face recognition

NIU Liping, ZHENG Yanbin, CAO Xizheng   

  1. College of Computer and Information Technology, Henan Normal University, Xinxiang, Henan 453007, China
  • Online:2013-07-15 Published:2013-07-31

摘要: 对贝叶斯分类中最大似然(ML)公式进行了简化,给出了一种实用的快速计算相似度的方法,在此基础上设计了基于分块Gabor特征提取的贝叶斯人脸识别算法。该算法从原始数字图像出发,先对图像矩阵进行分块,然后对分块子图像进行多分辨率的Gabor特征提取,对每一个特征块设计一个贝叶斯分类器,通过将这些分类器加权平均,得到最后的决策。在FERET人脸数据库的实验结果验证了该方法的有效性。

关键词: 人脸识别, Gabor变换, 图像分块, 最大似然准则(ML), 贝叶斯分类

Abstract: An improved Maximum Likelihood(ML) measure is proposed, which simplifies the similarity computation in the Bayesian algorithm. And then a novel block-based Gabor transformed for Bayesian face recognition is proposed. The original sample images are divided into smaller sub-images, utilizing the convolution of the sub-images and the Gabor filters to extract features, each sub-image is designed as a ML classifier of Bayesian, by use of weighed average similarity to make the final decision. The experiments on FERET face database have shown the effectiveness of the method.

Key words: face recognition, Gabor transform, image-blocked, Maximum Likelihood(ML), Bayesian classifier