计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (13): 266-270.

• 工程与应用 • 上一篇    

遗传算法在多品种小批量模式MPS中的应用

杨美荣1,崔曼曼2,史建锋2,肖玲诺3   

  1. 1. 哈尔滨工业大学 经济管理学院(威海),山东 威海  264209
    2. 哈尔滨工业大学 管理学院,哈尔滨  150001
    3. 哈尔滨工业大学 人文与社会科学学院,哈尔滨  150001
  • 出版日期:2013-07-01 发布日期:2013-06-28

Applications of Genetic Algorithm in production planning of multi-categories and small batch mode

YANG Meirong1, CUI Manman2, SHI Jianfeng2, XIAO Lingnuo3   

  1. 1.School of Economics and Management at Weihai, Harbin Institute of Technology, Weihai, Shandong 264209, China
    2.School of  Management , Harbin Institute of Technology, Harbin 150001, China
    3.School of Humanities and Social Science, Harbin Institute of Technology, Harbin 150001, China
  • Online:2013-07-01 Published:2013-06-28

摘要: 结合准时制生产和约束理论,以“关键设备产能”和“产品提前期”两大约束为重心,确定以关键工作中心利用率最高和提前/拖期罚款最少作为MPS模型的两个目标,提出了一种多品种、小批量生产模式下企业MPS的双目标排单模型的建立思路和方法;应用遗传算法对模型进行优化计算,通过对企业实例数据的运行结果分析,验证了方案的有效性。

关键词: 主生产计划, 约束理论, 准时制生产, 遗传算法

Abstract: According to Just-in-Time production and Theory of Constraints, centering on two restrictions of producing ability of key work center and production lead time, determining the maximum utilization of key work center and the least earliness/tardiness fine as the two goals of MPS model, this paper presents a double-goal MPS model based on multi-variety and small-batch enterprise. It uses GA to optimize the MPS model. Through analyzing the results of the enterprise data, GA has been proved to be effective.

Key words: master production schedule, Theory of Constraints(TOC), Just-in-Time(JIT), Genetic Algorithms(GA)