计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (11): 41-44.

• 理论研究、研发设计 • 上一篇    下一篇

二元域上三次和四次剩余码的幂等生成元

董学东1,李文杰2,张  妍3   

  1. 1.大连大学 信息工程学院,辽宁 大连 116622
    2.赤峰学院 附属中学,内蒙古 赤峰 024000
    3.辽宁师范大学 数学学院,辽宁 大连 116029
  • 出版日期:2013-06-01 发布日期:2013-06-14

Generating idempotents of cubic and quartic residue codes over field [F2]

DONG Xuedong1, LI Wenjie2, ZHANG Yan3   

  1. 1.College of Information Engineering, Dalian University, Dalian, Liaoning 116622, China
    2.Middle School Attached to Chifeng College,Chifeng, Nei Mongol 024000, China
    3.School of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, China
  • Online:2013-06-01 Published:2013-06-14

摘要: 有限域上高次剩余码的生成多项式都是多项式[xn-1]的因式。针对多项式[xn-1]在有限域上分解的困难性,给出了二元域[F2]上三次和四次剩余码的幂等生成元表达式。利用计算机软件求解该幂等生成元与[xn-1]最大公因式就可得到三次和四次剩余码生成多项式而不用分解[xn-1]。

关键词: 幂等生成元, 剩余码, 循环码

Abstract: The generating polynomials of higher degree residue codes over finite fields are factors of the polynomial[xn-1]. Generally speaking, it is difficult to factor the polynomial[xn-1] over finite fields. This paper gives generating idempotents of cubic and quartic residue codes over the field [F2]. As a result, the generating polynomials of cubic and quartic residue codes over the field [F2] can be obtained by computing the greatest common divisors of these generating idempotents and the polynomial[xn-1] with computer software such as Matlab and Maple。

Key words: generating idempotent, residue code, cyclic code