计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (7): 60-63.

• 理论研究、研发设计 • 上一篇    下一篇

解并行机模糊调度问题的自适应遗传算法

刘文程,高家全   

  1. 浙江工业大学 之江学院,杭州 310024
  • 出版日期:2013-04-01 发布日期:2013-04-15

Self-adapting genetic algorithm for solving fuzzy scheduling problem on parallel machines

LIU Wencheng, GAO Jiaquan   

  1. College of Zhijiang, Zhejiang University of Technology, Hangzhou 310024, China
  • Online:2013-04-01 Published:2013-04-15

摘要: 针对家纺企业车间调度的实际情况,建立了一种产品优先级约束的模糊车间调度模型。在模型中,完工时间和交货期都是模糊的,交货期平均满意度最大为调度目标。基于此模型,提出了一种自适应的遗传算法,该算法通过比例选择及局部搜索保证种群的优良特性,并通过自动调节变异率和交叉率的方式保证种群的多样性,有效跳出局部收敛。仿真结果表明,自适应遗传算法能有效求解,并优于免疫遗传算法。

关键词: 并行机, 模糊加工时间, 模糊交货期, 模糊调度, 遗传算法

Abstract: According to the practical job shop scheduling problem subject to priority constraint of products with fuzzy processing time and due time in textile manufacturing industry, a scheduling model with maximization of average satisfaction is proposed. Furthermore, an Adaptive Genetic Algorithm(AGA) is presented to solve the scheduling models. In this algorithm, besides the proportional selection, the self-adapting mutation and cross are proposed to enhance the diversity of the population. Simulation results show that AGA is effective and is advantageous to the artificial immune algorithm.

Key words: parallel machines, fuzzy processing time, fuzzy due-date, fuzzy scheduling, Genetic Algorithm(GA)