计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (5): 144-146.
徐晓波1,李卫斌1,2
XU Xiaobo1, LI Weibin1,2
摘要: 当前内河船舶配备的导航设备,如雷达、无线电信号接收避险等,无法在各种恶劣气候条件下准确获取目标的信息,不能满足可靠的船-船、船-桥避碰要求。采用基于MFFK分形特征与Mean-Shift方法相结合的红外船舶目标检测跟踪技术,在其运动过程中实时采集来自船运动前方以及两侧环境情况的视频文件,同时将其转化为单帧的实时红外图像,通过MFFK参数将环境与可疑人造目标分离开,然后采用基于Mean-Shift的目标跟踪技术进行目标定位,跟踪,通过对连续红外图像高速比对,在其运动轨迹发生变化可能产生事故之前发出警报。实验结果表明,该算法能够应付场景的各种变化以及多运动船舶目标交错遮挡等情形,算法具有鲁棒性。