计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (4): 146-148.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

融合改进差分进化思想的K-调和均值聚类

毛  力1,刘兴阳1,沈明明1,杨  弘2   

  1. 1.江南大学 物联网工程学院,轻工过程先进控制教育部重点实验室,江苏 无锡 214122
    2.中国水产科学研究院 淡水渔业研究中心,江苏 无锡 214081
  • 出版日期:2013-02-15 发布日期:2013-02-18

K-harmonic means clustering with enhanced differential evolution

MAO Li1, LIU Xingyang1, SHEN Mingming1, YANG Hong2   

  1. 1.Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education), School of Internet of Things, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, Jiangsu 214081, China
  • Online:2013-02-15 Published:2013-02-18

摘要: 针对K-调和均值聚类算法易陷入局部最优的缺点,提出了一种基于改进差分进化的K-调和均值聚类算法。该算法通过引入基于Logistic变尺度混沌搜索和指数递增交叉概率算子的差分进化算法来增强全局寻优能力。实验结果表明,该算法能够较好地克服K-调和均值算法的缺点,在保证收敛速度的同时增强了算法的全局搜索能力。

关键词: K-调和均值, 差分进化, Logistic混沌搜索, 指数递增交叉概率

Abstract: The conventional K-harmonic means is tend to be trapped by local optima. To resolve this problem, a novel K-harmonic means clustering algorithm using enhanced differential evolution technique is proposed. This algorithm improves the global search ability by applying variable-scale Logistic chaotic searching and exponentially increasing crossover probability operator. Numerical experiments show that this algorithm overcomes the disadvantages of the K-harmonic means, and improves the global search ability while achieving faster convergence rate.

Key words: K-harmonic means, differential evolution, Logistic chaotic searching, exponentially increasing crossover probability