计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (2): 157-159.
• 数据库、数据挖掘、机器学习 • 上一篇 下一篇
胡 伟
出版日期:
发布日期:
HU Wei
Online:
Published:
摘要: 针对传统K均值聚类方法采用聚类前随机选择聚类个数K而导致的聚类结果不理想的问题,结合空间中的层次结构,提出一种改进的层次K均值聚类算法。该方法通过初步聚类,判断是否达到理想结果,从而决定是否继续进行更细层次的聚类,如此迭代执行,从而生成一棵层次型K均值聚类树,在该树形结构上可以自动地选择聚类的个数。标准数据集上的实验结果表明,与传统的K均值聚类方法相比,提出的改进的层次聚类方法的确能够取得较优秀的聚类效果。
关键词: K均值聚类, 聚类个数, 层次结构, 层次K均值聚类算法, 聚类树
Abstract: This paper presents an improved hierarchical K-means clustering algorithm combining hierarchical structure of space, in order to solve the problem that bad result of traditional K-means clustering method by selecting the number of categories randomly before clustering. By primary K-means clustering, it determines whether re-clustering in the more fine level by the result of initial clustering. By repeated execution, a hierarchical K-means clustering tree is produced, and the number of clusters is selected automatically on this tree structure. Simulation results on UCI datasets demonstrate that comparing with traditional K-means clustering means, the better clustering results are obtained by the hierarchical K-means clustering model.
Key words: K-means clustering, clustering number, hierarchical structure, hierarchical K-means algorithm, clustering tree
胡 伟. 改进的层次K均值聚类算法[J]. 计算机工程与应用, 2013, 49(2): 157-159.
HU Wei. Improved hierarchical K-means clustering algorithm[J]. Computer Engineering and Applications, 2013, 49(2): 157-159.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2013/V49/I2/157