计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (14): 231-234.
喻晓莉1,黎泽伦1,倪 彦2
YU Xiaoli1, LI Zelun1, NI Yan2
摘要: 提出一种新的故障诊断方法,以便更加有效地解决具有先验知识的故障分类问题。以先验样本点为中心,利用内积判断样本数据的相似度,从而进行聚类分析,在特征空间里作超平面与球面相交,得到一个球面覆盖领域,从而将神经网络训练问题转化为点集的覆盖问题。该算法以构造型神经网络为基础,其特点是直接对故障样本数据进行处理,由于覆盖中心确定,该算法构造出的是隐层元最少的网络结构,有效地克服了传统神经网络训练时间长、学习复杂的问题。计算机仿真实验结果证实了该算法的有效性。