计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (28): 48-51.DOI: 10.3778/j.issn.1002-8331.2009.28.014

• 研究、探讨 • 上一篇    下一篇

新的融合算法在机器人路径规划中的应用

段爱玲1,邓高峰1,张雪萍1,刘彦萍1,王家耀1,2   

  1. 1.河南工业大学 信息科学与工程学院,郑州 450050
    2.解放军信息工程大学 测绘学院,郑州 450050
  • 收稿日期:2008-07-18 修回日期:2008-10-31 出版日期:2009-10-01 发布日期:2009-10-01
  • 通讯作者: 段爱玲

Application of new combination algorithm in robot path planning

DUAN Ai-ling1,DENG Gao-feng1,ZHANG Xue-ping1,LIU Yan-ping1,WANG Jia-yao1,2   

  1. 1.School of Information Science and Engineering,Henan University of Technology,Zhengzhou 450050,China
    2.Institute of Surveying and Mapping,PLA Information Engineering University,Zhengzhou 450050,China
  • Received:2008-07-18 Revised:2008-10-31 Online:2009-10-01 Published:2009-10-01
  • Contact: DUAN Ai-ling

摘要: 机器人路径规划一直是机器人学领域的一个非常重要的研究课题。提出了一种基于蚁群粒子群算法融合的机器人全局路径规划算法,该方法有效地结合了蚁群算法和粒子群算法的优点,利用粒子群算法的快速简洁等特点得到蚁群算法初始信息素分布;然后利用蚁群算法的并行性、正反馈性、求解精度高等优点,求得全局最优解。仿真实验结果证明了该方法的有效性和可行性。

关键词: 路径规划, 蚁群算法, 粒子群算法

Abstract: Robot path planning is an important research topic in robotics field.The paper proposes an algorithm based on the combination of Ant Colony Optimization(ACO) and Particle Swarm Optimization(PSO) for path planning.The new algorithm combines the advantages of ACO and PSO effectively and generates the distribution of the initial information for ACO by using the merits of high efficiency and concision of PSO,and then uses the advantages of parallelizability,positive feedback and solution with high accuracy of ACO to get global optimum solution.The simulation result demonstrates the effectiveness and feasibility of the proposed algorithm.

Key words: path planning, Ant Colony Optimization(ACO), Particle Swarm Optimization(PSO)

中图分类号: