计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (28): 246-248.DOI: 10.3778/j.issn.1002-8331.2009.28.074

• 工程与应用 • 上一篇    

新的木材显微细胞图像分类识别方法

任洪娥,王海丰,赵 鹏   

  1. 东北林业大学,哈尔滨 150040
  • 收稿日期:2008-06-02 修回日期:2008-09-15 出版日期:2009-10-01 发布日期:2009-10-01
  • 通讯作者: 任洪娥

Cell image of wood classification and identification algorithm

REN Hong-e,WANG Hai-feng,ZHAO Peng   

  1. Northeast Forestry University,Harbin 150040,China
  • Received:2008-06-02 Revised:2008-09-15 Online:2009-10-01 Published:2009-10-01
  • Contact: REN Hong-e

摘要: 提出一种基于纹理的木材显微细胞图像分类算法。通过非下采样的Contourlet变换模极值密度提取图像纹理特征,并采用K近邻分类方法进行分类,实现对木材显微细胞图像的分类。实验结果表明:平均识别正确率在85%以上。提出的方法能有效地实现对木材显微细胞图像的分类。

关键词: 纹理特征, 分类, 非下采样Contourlet变换, 木材细胞

Abstract: The image classification algorithm of the microscopic cell of wood based on the texture feature is proposed.The modulus extreme density of the Nonsubsampled Contourlet transform is used to extract the f0eature of cell image classification.The K-nearest neighbor classification method is used to carry out the classification of timber microscopic cell image.Experimental results indicate that the average recognition accuracy is above 85%.The proposed method can effectively achieve the classification of timber microscopic cell image.

Key words: texture feature, classification, nonsubsampled Contourlet transform, wood cell

中图分类号: