计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (23): 157-158.

• 图形、图像、模式识别 • 上一篇    下一篇

结合灰度变换的Chan-Vese模型

罗德芳1,2,何传江1,原 野1   

  1. 1.重庆大学 数学与统计学院 信息与计算科学系,重庆 401331
    2.重庆师范大学,重庆 400700
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-08-11 发布日期:2011-08-11

Chan-Vese model with gray level transformation

LUO Defang1,2,HE Chuanjiang1,YUAN Ye1   

  1. 1.Department of Information and Computing Science,College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China
    2.Chongqing Normal University,Chongqing 400700,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-08-11 Published:2011-08-11

摘要: 幂变换和负片变换是图像增强中频繁使用的两种基本的灰度变换。该文把这两种灰度变换与Chan-Vese模型进行结合,以提高Chan-Vese模型的分割速度和效果。实验表明:该方案大大提高了Chan-Vese模型的收敛速度,而且也使Chan-Vese模型具有较好的处理直线和尖角的能力。

关键词: 图像分割, 活动轮廓模型, Chan-Vese模型, 幂变换, 负片变换

Abstract: Power-law transformation and negative transformation are two basic types of gray level transformations that are used frequently for image enhancement.This paper incorporates the two transformations into the well-known Chan-Vese model to raise the performance of Chan-Vese model in terms of segmentation speed and quality.By practical experiments,it is verified that new Chan-Vese model has faster convergence than Chan-Vese model,and exhibits certain capability of handling straight edges and corners.

Key words: image segmentation, active contour models, Chan-Vese model, power-law transformation, negative transformation