计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (36): 230-233.

• 工程与应用 • 上一篇    下一篇

人工神经网络在成矿预测中的应用

阎继宁1,2,周可法1,王金林1,张海波1,程宛文1,刘朝霞1   

  1. 1.中国科学院 新疆生态与地理研究所 新疆矿产资源研究中心,乌鲁木齐 830011
    2.中国科学院 研究生院,北京 100049
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-12-21 发布日期:2011-12-21

Application of artificial neural network to ore-forming prediction

YAN Jining1,2,ZHOU Kefa1,WANG Jinlin1,ZHANG Haibo1,CHENG Wanwen1,LIU Zhaoxia1   

  1. 1.Xinjiang Research Center for Mineral Resources,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China
    2.Graduate University,Chinese Academy of Sciences,Beijing 100049,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-12-21 Published:2011-12-21

摘要: 成矿预测正从定性描述性预测向定量成矿预测转变,数理统计方法和技术逐渐引入地学研究。传统统计方法多假想包含地学现象的空间为均质,假定在一个尺度上的地学关系在另一个尺度上也是相同的,而在实际应用中这样的地质条件是不可能存在的。而非线性科学正具有不满足线性叠加原理的性质,因此将非线性科学如人工神经网络与成矿预测相结合是未来矿产资源预测的发展方向。采用Kohonen聚类模型和BP预测模型相结合的方法,对包古图金矿区1 444个矿点的地球化学数据进行聚类分析并建立成矿预测模型,预测正确率为85.2%。该方法性能良好,具有一定的实际意义,为解决成矿预测提供了一种新的手段。

关键词: 人工神经网络, Kohonen, 反向传播(BP), 成矿预测

Abstract: With the transformation of ore-forming prediction from qualitative to quantitative,mathematical statistical methods and techniques are introduced into this field in recent years.Traditional statistical methods are applied under the assumption that the geological phenomena are homogeneous and a geo-scale relationship is the same with the others.But those geological conditions don’t exist in the practical application.Therefore,applying the non-linear science,which is not satisfied with the nature of the principle of linear superposition,such as neural network to metallogenic prognosis becomes the development direction.This paper combines the Kohonen clustering model and the BP prediction model,performs cluster analysis of the geochemical data of 1,444 mineral points in BaoGutu,and establishes the ore-forming prediction model.The prediction accuracy is 85.2%.The result shows that the proposed method is effective and feasible,which provides a new means for solving the ore-forming prediction.

Key words: artificial neural network, Kohonen, Back Propagation(BP), ore-forming prediction