计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (18): 191-194.

• 图形、图像、模式识别 • 上一篇    下一篇

基于改进简化PCNN模型的椒盐噪声滤波方法

蒋加伏,申 静,朱德正   

  1. 长沙理工大学 计算机与通信工程学院,长沙 410114
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-21 发布日期:2011-06-21

Filtering algorithm for salt and pepper nosie based on modified simplified PCNN model

JIANG Jiafu,SHEN Jing,ZHU Dezheng   

  1. School of Computer & Communication Engineering,Changsha University of Science & Technology,Changsha 410114,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-21 Published:2011-06-21

摘要: 针对PCNN简化模型在图像滤波中存在的问题,首先运用反证法证明PCNN简化模型在图像椒盐噪声检测时对低亮度的椒噪声检测失效;然后采用分而治之的方法对PCNN简化模型进行了改进,得到一种改进的PCNN简化模型;最后利用改进的PCNN简化模型检测图像的污染程度,确定噪声的具体位置,自适应地确定中值滤波窗口的大小,实现图像的自适应中值滤波。实验结果表明,此方法提高了噪声检测的准确性、图像滤波的保真性,对不同密度的椒盐噪声都有较好的滤波性能。

关键词: 自适应中值滤波, 脉冲耦合神经网络, 椒盐噪声

Abstract: An adaptive median filter algorithm is proposed to slove the problem of the simplified Pulse Coupled Neural Network(PCNN) model in image filtering.At first,the simplified model is proved to fail to detect pepper noise using reductio Ad absurdum,then the model is improved by using the method of dividing and rule,finally the adaptive median filter algorithm is acheieved by detecting the pollution level,ascertaining the specific locations of noise points and determining the size of the median filtering window adaptively.Experimental results show that this algorithm improves the accuracy of noise detection and the fidelity of image filtering,and has a better performance on different noise densities.

Key words: adaptive median filter, Pulse Coupled Neural Network(PCNN), salt and pepper noise