计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (17): 181-184.

• 图形、图像、模式识别 • 上一篇    下一篇

Besov空间下迭代全变差正则化的图像恢复模型

江玲玲1,殷海青2   

  1. 1.中国石油大学 数学与计算科学学院,山东 东营 257061
    2.西安电子科技大学 理学院,西安 710071
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-11 发布日期:2011-06-11

Iterative total variation regularization for image restoration in Besov spaces

JIANG Lingling1,YIN Haiqing2   

  1. 1.College of Mathematics and Computational Science,China University of Petroleum,Dongying,Shandong 257061,China
    2.School of Science,Xidian University,Xi’an 710071,China

  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-11 Published:2011-06-11

摘要: 在Besov空间下,提出了一种用于图像恢复领域的迭代全变差正则化模型。通过使用一个加权的参数序列,给出了一个迭代正则化的变分问题,这个变分问题实际上是一个小波软硬阈值结合的迭代程序。给出了新模型的停止标准和一些好的性质,如单调性和收敛性等。数值实验表明与传统去噪方法相比,新方法不仅能较好地恢复图像,而且收敛速度较快。

关键词: 迭代正则化, 全变差, Bregman距离, Besov空间

Abstract: An iterative regularization procedure in Besov spaces for image restoration is generalized.By using a suitable sequence of penalty parameters,the issue of solvability of minimization problems arising in each step of the iterative procedure is solved.The generalized iterative regularization procedure can be considered as a combination of soft-thresholding and hard-thresholding.Moreover,an effective stopping criteria and convergence result for the procedure are obtained.The numerical results indicate that the iteration procedure yields high-quality reconstructions and converges faster than the Xu-Osher method.

Key words: iterative regularization, total variation, Bregman distance, Besov spaces