计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (30): 234-236.
• 工程与应用 • 上一篇 下一篇
常玉慧,钱 进,郭庆军
收稿日期:
修回日期:
出版日期:
发布日期:
CHANG Yuhui,QIAN Jin,GUO Qingjun
Received:
Revised:
Online:
Published:
摘要: 影响电力短期负荷预测精度的因素众多,为了找到负荷值与各种外在因素之间的关系,提出了一种基于粗糙集理论的混合属性约简算法,并对与预测日相似性数据进行快速约简,讨论了基于混合属性约简和BP神经网络相结合的预测模型。实验结果表明,这种方法提高了短期电力负荷预测精度。
关键词: 混合属性约简算法, 粗糙集, BP神经网络, 短期负荷预测
Abstract: There are many factors that influence the accuracy of short power load forecasting.In order to find the relationship between the load value and the outside factors,this paper presents a fast hybrid attribute reduction algorithm for data reduction based on rough set,and then discusses the forecasting model using hybrid attribute reduction and the BP artificial neural network.The experiment results show the model improves the forecasting accuracy.
Key words: hybrid attribute reduction algorithm, rough set, BP artificial neural network, short power load forecasting
常玉慧,钱 进,郭庆军. 混合属性约简方法在电力负荷预测中的应用[J]. 计算机工程与应用, 2011, 47(30): 234-236.
CHANG Yuhui,QIAN Jin,GUO Qingjun. Hybrid attribute reduction method and its application in power load forecasting[J]. Computer Engineering and Applications, 2011, 47(30): 234-236.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I30/234