计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (16): 86-88.

• 网络、通信、安全 • 上一篇    下一篇

一种自适应的人工免疫异常检测算法

翟鸿雁1,熊 伟2,曾纪霞1   

  1. 1.广州城市职业学院,广州 510405
    2.广州大学 计算机科学与教育软件学院,广州 510006
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-01 发布日期:2011-06-01

Self-adaptive anomaly detection algorithm with artificial immune

ZHAI Hongyan1,XIONG Wei2,ZENG Jixia1   

  1. 1.Guangzhou City Polytechnic,Guangzhou 510405,China
    2.School of Computer Science and Educational Software,Guangzhou University,Guangzhou 510006,China

  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-01 Published:2011-06-01

摘要: 提出了一种基于免疫的自适应异常检测算法SAIM,该算法通过对训练抗原的学习,形成最优的抗体对记忆细胞集进行进化和更新,通过记忆细胞集采用KNN方法投票进行异常检测。实验采用著名UCI机器学习数据库的Hepatitis标准数据集,获得的分类准确率为93.5%,与现有同类算法进行比较,SAIM所取得的准确率具有一定的优越性。

关键词: 异常检测, 人工免疫系统, 自适应算法

Abstract: A self-adaptive anomaly detection algorithm based on artificial immune system,named as SAIM,is proposed.In SAIM,the optimal antibodies will be obtained through the learning of each training antigen and the memory cell will be evolved and updated by the optimal antibodies.Anomaly detection process is accomplished by majority vote of the k nearest neighbor antibody in the artificial immune system.The experiments use the famous Hepatitis Benchmark dataset,which is taken from the UCI machine learning database.The obtained detection accuracy of SAIM is 93.5%,which is very promising with regard to the other classification applications in the literature for this problem.

Key words: anomaly detection, artificial immune system, self-adaptive