计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (14): 230-232.
吴盘龙,任开创,蔡亚东
WU Panlong,REN Kaichuang,CAI Yadong
摘要: 为解决目标数未知或随时间变化时的多目标跟踪问题,将多目标状态和观测信息表示为随机集的形式,建立了多目标跟踪的混合高斯概率假设密度(PHD)滤波方法。当目标初始的先验概率密度满足高斯分布的形式时,通过将状态噪声、观测噪声、目标的繁衍、新目标的产生、目标的存活概率和检测概率表示成混合高斯的形式,之后每个时刻的后验概率密度均能表示成混合高斯的形式。线性混合高斯PHD滤波方法将Kalman滤波引入到PHD滤波中,利用混合高斯成分预测和更新随机集的PHD,并估计出目标的状态。实验结果表明,在杂波环境下混合高斯PHD滤波方法可以有效地跟踪目标状态。