计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (29): 52-55.

• 研究、探讨 • 上一篇    下一篇

遗传算法优化BP神经网络的混沌时间序列预测

李 松,罗 勇,张铭锐   

  1. 河北大学 管理学院,河北 保定 071002
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-10-11 发布日期:2011-10-11

Prediction method for chaotic time series of optimized BP neural network based on genetic algorithm

LI Song,LUO Yong,ZHANG Mingrui   

  1. School of Management,Hebei University,Baoding,Hebei 071002,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-10-11 Published:2011-10-11

摘要: 为提高BP神经网络预测模型对混沌时间序列的预测精度,将改进的遗传算法和BP神经网络结合,提出了一种基于改进遗传算法优化BP神经网络的混沌时间序列预测方法。利用改进的遗传算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求得最优解。将该模型应用到几个典型的非线性系统进行预测仿真,验证了该算法的有效性,与BP神经网络预测模型的预测结果进行了比较,仿真结果表明该方法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度。

关键词: 混沌理论, 预测, 反向传播(BP)神经网络, 遗传算法

Abstract: In order to improve forecasting model precision of BP neural network for chaotic time series,an improved prediction mothod for chaotic time series of optimized BP neural network based on modified genetic algorithm is presented.The modified genetic algorithm is used to optimize the weights and thresholds of BP neural network,and then BP neural network is trained to search for the optimal solution.The availability of this prediction method is proved by predicting chaotic time series of several typical nonlinear systems.Compared with the forecasting results of BP neural network,the computer simulations have shown that the nonlinear fitting and precision of this prediction model are better than those of BP prediction model.

Key words: chaos theory, prediction, Back Propagation(BP) neural network, genetic algorithm