计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (9): 210-213.

• 工程与应用 • 上一篇    下一篇

战时维修保障资源优化调度的μPSO算法研究

牛天林,王 洁,杜燕波,杜安利   

  1. 空军工程大学 导弹学院,陕西 三原 713800
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-21 发布日期:2011-03-21

Researches of maintenance and support resources scheduling in battlefield based on μPSO algorithm

NIU Tianlin,WANG Jie,DU Yanbo,DU Anli   

  1. Missile Institute of Airforce Engineering University,Sanyuan,Shaanxi 713800,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-21 Published:2011-03-21

摘要: 将战时装备维修保障资源调度决策问题视作多任务多资源竞争与协调的多目标组合优化问题,构建出合理完善的资源调度决策模型。针对传统PSO算法搜索能力弱、易陷入局部最小等不足,提出一种在算法结构上改进的μPSO方法用于模型求解,它通过对一般粒子和当代最优粒子的不同速度、位置计算方式增强算法搜索能力;利用排斥项避免搜索进程的早熟收敛。最后通过算例证明μPSO算法对求解该类问题是可行有效的。

关键词: 维修保障资源调度, 微粒子群算法, 多目标优化, 决策

Abstract: Equipment maintenance and support resources scheduling decision is a typical multi-task and multi-resources competition and cooperation combinatorial optimization problem.Firstly,this paper builds a rational scheduling decision-making model which considers the factors of time,risks and benefits.Then considering the weak search ability and early plunging into local solution phenomenon of traditional PSO method,this paper designs a μPSO algorithm which improves the method structure and has better performance.The different velocity and position compute formulas will distinguish normal particles and best particle of the time,and repulsion-item is used to avoid search process early converging.At last,a calculational case proves the feasibility and validity of μPSO method.

Key words: maintenance and support resources scheduling, micro-Particle Swarm Optimization(μPSO), multi-objective programming, decision-making