计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (9): 33-36.

• 研究、探讨 • 上一篇    下一篇

求解非线性方程组的混合粒子群算法

欧阳艾嘉1,刘利斌2,乐光学1,3,李肯立3   

  1. 1.嘉兴学院 数理与信息工程学院,浙江 嘉兴 314001
    2.池州学院 数学与计算机科学系,安徽 池州 247000
    3.湖南大学 计算机与通信学院,长沙 410082
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-21 发布日期:2011-03-21

Hybrid particle swarm optimization for solving systems of nonlinear functions

OUYANG Aijia1,LIU Libin2,YUE Guangxue1,3,LI Kenli3   

  1. 1.College of Mathematics and Information Engineering,Jiaxing University,Jiaxing,Zhejiang 314001,China
    2.Department of Mathematics and Computer Science,University of Chizhou,Chizhou,Anhui 247000,China
    3.School of Computer and Communication,Hunan University,Changsha 410082,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-21 Published:2011-03-21

摘要: 结合Hooke-Jeeves和粒子群的优点,提出了一种混合粒子群算法,用于求解非线性方程组,以克服Hooke-Jeeves算法对初始值敏感和粒子群容易陷入局部极值而导致解的精度不够的缺陷。该算法充分发挥了粒子群强大的全局搜索能力和Hooke-Jeeves的局部精细搜索能力,数值实验结果表明:能够以满意的精度求出对未知数具有敏感性的非线性方程组的解,具有良好的鲁棒性和较快的收敛速度和较高的搜索精度。

关键词: 非线性方程组, Hooke-Jeeves算法, 粒子群算法

Abstract: A Hybrid Particle Swarm Optimization(HPSO) algorithm,which combines the advantages of the method Hooke-
Jeeves(HJ) and Particle Swarm Optimization(PSO),is put forward to solve systems of nonlinear functions,and it can be used to overcome the difficulty in selecting good initial guess for HJ and inaccuracy of PSO due to being easily trapped into local optimal.The algorithm has sufficiently displayed the performance of PSO’s global search and HJ’s accurate local search.Numerical computations show that the approach has great robustness,high convergence rate and precision,and it can give satisfactory solutions.

Key words: systems of nonlinear functions, Hooke-Jeeves, particle swarm optimization