计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (7): 139-142.

• 数据库、信号与信息处理 • 上一篇    下一篇

基于小波变换的音频分割

郑继明1,张 萍2   

  1. 1.重庆邮电大学 应用数学研究所,重庆 400065
    2.重庆邮电大学 计算机科学与技术学院,重庆 400065
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-01 发布日期:2011-03-01

Audio segmentation based on wavelet transform

ZHENG Jiming1,ZHANG Ping2   

  1. 1.Institute of Applied Mathematics,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    2.College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-01 Published:2011-03-01

摘要: 针对滑动变长窗口BIC算法冗余分割点多的问题,提出了基于小波子带平均能量方差和BIC的音频分割算法相结合。该算法用小波子带平均能量方差将连续音频流分割成音频段,然后用改进的滑动变长窗口BIC算法在音频段上检测声学改变点。实验表明,该算法取得了较好的分割效果,与滑动变长窗口的BIC算法相比,该算法的准确率、召回率和综合性能都得了提高。

关键词: 小波子带能量, BIC准测, 广播音频分割, 准确率, 召回率

Abstract: Based on wavelet sub-band average-energy variance and Bayesian information criterion,audio segmentation algorithm is proposed,for the sliding variable-size analysis window BIC algorithm suffers from a large amount of redundancy change points.The approaches detect acoustic changes by partitioning a continuous audio stream into sub-segment using wavelet sub-band average-energy variance,and then detect acoustic changes by improved sliding variable-size analysis window BIC algorithm in sub-segment.The experiment shows that this approaches have achieved a better results,and compared with the sliding variable-size analysis window BIC algorithm,this algorithms have improved the precision,recall and F-measure.

Key words: wavelet sub-band energy, Bayesian Information Criterion(BIC), broadcasting segmentation, recall, precision