计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (7): 46-48.

• 研究、探讨 • 上一篇    下一篇

用遗传算法优化Boltzmann机

陈 洁,刘希玉,姚树魁   

  1. 山东师范大学 管理与经济学院,济南 250014
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-01 发布日期:2011-03-01

Boltzmann machine optimization based on genetic algorithm

CHEN Jie,LIU Xiyu,YAO Shukui   

  1. School of Management and Economics,Shandong Normal University,Jinan 250014,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-01 Published:2011-03-01

摘要: Boltzmann机是一种应用广泛的随机神经网络。它通过模拟退火算法进行网络学习,能取得一个全局或接近全局最优的最优值;通过期望网络模式和实际学习得到的网络模式比较来调节网络的权值,使网络能尽可能地达到或逼近期望的网络模式。将遗传算法运用到Boltzmann机的网络学习中,在对BM机编码后,通过选择、交叉和变异等遗传操作算子对网络进行训练,调整网络的权值,使适应度函数值大的网络保留下来,最终使网络达到期望的模式。通过实例验证,这是一种简单可行的调节网络权值的方法。

关键词: Boltzmann机, 遗传算法, 网络模式

Abstract: Boltzmann machine is widely used in stochastic neural networks.It can obtain the global optimum or a near-optimal solution by network learning based on simulated annealing.Compared the expectations of the network model with the actual learning of the network model to adjust the weights of the network,so that the network can be as much as possible to meet or close to the desired network model.This genetic algorithm is applied to the learning of the Boltzmann machine,which can change the network weights through the competitive selection genetic algorithm optimizing operation,so that the network can achieve the desired pattern.An example proves that this is a simple and practical way to adjust the network weights.

Key words: Boltzmann machine, genetic algorithm, network model