计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (6): 205-207.

• 图形、图像、模式识别 • 上一篇    下一篇

基于向量组的Fisher线性鉴别分析方法

朱明旱,邵湘怡   

  1. 湖南文理学院 电气与信息工程学院,湖南 常德 415000
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-02-21 发布日期:2011-02-21

Fisher linear discriminant analysis algorithm based on vector muster

ZHU Minghan,SHAO Xiangyi   

  1. College of Communication and Electric Engineering,Hunan University of Arts and Science,Changde,Hunan 415000,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-02-21 Published:2011-02-21

摘要: 提出了一种基于向量组的Fisher线性鉴别分析方法。该方法先将原始的高维向量分割为低维的子向量组,再对向量组运用Fisher线性鉴别分析。这种处理方法,不但能够解决任意高维下的小样本问题,而且通过选择恰当的子向量维数,可以从向量中抽取出最有效的特征值。此外,基于向量组的Fisher线性鉴别分析是Fisher线性鉴别分析和二维Fisher线性鉴别分析的进一步推广。

关键词: Fisher线性鉴别分析, 类间散布矩阵, 类内散布矩阵, 高维小样本问题

Abstract: Fisher linear discriminant analysis algorithm based on vector muster is presented in this paper.The original high-dimensional vectors are divided into a set of sub-vectors with low-dimensional.Fisher linear discriminant analysis is adopted based on vector muster.This algorithm can deal with all high-dimensional and small sample size problems.Otherwise,selecting appropriate dimension of sub-vector can extract the optimization feature value of vector.Fisher linear discriminant analysis algorithm based on vector muster is the extension of Fisher linear discriminant analysis and two-dimensional fisher linear discriminant analysis.

Key words: Fisher linear discriminant analysis, between-class scatter matrix, within-class scatter matrix, high-dimensional and small sample size problem