计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (14): 49-52.DOI: 10.3778/j.issn.1002-8331.2009.14.013
宗 瑜1,2,金 萍3,李明楚1
ZONG Yu1,2,JIN Ping3,LI Ming-chu1
摘要: K-means是典型的启发式聚类算法,容易受到初始解的影响而无法获得高质量的聚类结果。骨架是近年来启发式算法设计的研究热点,它是指所有全局最优解中相同的部分,对于提高启发式算法性能具有重要意义。给出的骨架初始解K-means算法(BK-means)的基本思想是:首先利用K-means算法得到一组局部最优解(聚类结果),通过对局部最优解求交得到骨架簇。利用骨架簇构造骨架初始解及新的搜索空间。最后以骨架初始解引导K-means算法在新的搜索空间中搜索聚类结果。在15组仿真数据集和4组实际数据集上的实验结果表明,BK-means算法具有获得高内聚、高分离的聚类结果能力。