计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (9): 234-236.
• 工程与应用 • 上一篇 下一篇
王强 陈英武 李孟军
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
Received:
Revised:
Online:
Published:
摘要: 分析了卷烟焦油含量预测问题,提出了基于支持向量机的卷烟焦油含量预测方法。首先,介绍了支持向量回归估计的学习算法。其次,建立了基于支持向量机的卷烟焦油含量预测模型。然后,提出了卷烟焦油含量支持向量机预测的实现算法。最后给出了一个算例。实例表明,该方法能够根据烟叶中的化学成分的测量值来预测卷烟的焦油含量。
关键词: 卷烟焦油含量, 预测模型, 化学成分, 支持向量机
Abstract: With an analysis of the estimation of cigarettes tar content, an estimation method is proposed based on support vector machine (SVM). Firstly, the algorithm of SVM in regression approximation is introduced. Secondly, The estimation model of cigarettes tar content based on SVM is established. Then, the implementation algorithm of cigarettes tar content estimation using SVM is presented. Finally, an example is used to illustrate the proposed method. It was proved by the example that the support vector machine can estimate the tar content of cigarettes with the measured data of the chemical components of tobacco.
Key words: Cigarettes tar content, estimation model, chemical components, support vector machine
王强 陈英武 李孟军. 基于支持向量机的卷烟焦油预测[J]. 计算机工程与应用, 2007, 43(9): 234-236.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I9/234