计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (21): 48-50.DOI: 10.3778/j.issn.1002-8331.2009.21.012

• 研究、探讨 • 上一篇    下一篇

可保证分类性能的最小二乘支持向量机

徐金宝1,廖 雷1,业巧林2   

  1. 1.南京工程学院 计算机工程学院,南京 211167
    2.南京林业大学 信息技术学院,南京 210037
  • 收稿日期:2008-12-16 修回日期:2009-05-21 出版日期:2009-07-21 发布日期:2009-07-21
  • 通讯作者: 徐金宝

Least squares support vector machine classifiers with guaranteed classification performance

XU Jin-bao1,LIAO Lei1,YE Qiao-lin2   

  1. 1.School of Computer Science,Nanjing Institute of Technology,Nanjing 211167,China
    2.School of Information Technology,Nanjing Forestry University,Nanjing 210037,China
  • Received:2008-12-16 Revised:2009-05-21 Online:2009-07-21 Published:2009-07-21
  • Contact: XU Jin-bao

摘要: 当前支持向量机是分类研究与应用的一个热点。提出了一个新的最小二乘支持向量机算法,该算法向最小二乘支持向量机(LS-SVM)优化模型中融入了类内散度(VSLSVM)思想,即用优化准则Min w′Mw对原LS-SVM进行重组合,w为对应LS-SVM中的权向量,M是类内散度矩阵。提出的方法仅仅需要求解一个线性系统而不是凸规划问题,实验主要对SVM和Suykens等人的方法进行了比较,并验证了提出的算法的有效性。

关键词: 最小二乘支持向量机, 类内散度, 更好精度, 线性系统

Abstract: Support Vector Machine(SVM) is one of focuses of research and application in classification.A new least-squares-based algorithm that introduces a within-class scatter with guaranteed classification performance(VSLSVM) in the design of least squares support vector machines(LS-SVM) is presented.This algorithm can obtain better correctness that reformulates primal LS-SVM problems with optimality criterion Min w′Mw where w is the weight vector corresponding the primal LS-SVM problems,M is the within-class scatter matrix.This method only requires to solve a linear system instead of a quadratic programming problem.Experiments are included to compare SVM and Suykens’ approach.

Key words: east squares support vector machines(LS-SVM), with-class scatter, better correctness, linear system