计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (31): 246-248.DOI: 10.3778/j.issn.1002-8331.2010.31.069

• 工程与应用 • 上一篇    

奇异摄动系统鲁棒镇定问题

刘丽丽1,2,王凯明2,3,彭济根2   

  1. 1.陕西师范大学 数学与信息科学学院,西安 710062
    2.西安交通大学 理学院,西安 710049
    3.长安大学 理学院,西安 710064
  • 收稿日期:2009-03-12 修回日期:2009-05-14 出版日期:2010-11-01 发布日期:2010-11-01
  • 通讯作者: 刘丽丽

Robust stabilization of singularly perturbed systems

LIU Li-li1,2,WANG Kai-ming2,3,PENG Ji-gen2   

  1. 1.College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062,China
    2.School of Science,Xi’an Jiaotong University,Xi’an 710049,China
    3.School of Science,Chang’an University,Xi’an 710064,China
  • Received:2009-03-12 Revised:2009-05-14 Online:2010-11-01 Published:2010-11-01
  • Contact: LIU Li-li

摘要: 讨论了确定与不确定奇异摄动系统的稳定性问题。首先给出了确定系统稳定及不确定系统鲁棒稳定的条件,同时给出摄动参数的稳定上界,其次,对不稳定系统,给出了状态反馈可镇定的条件及控制器的求解。这些条件均可由MATLAB中的求解器求解。最后,数值实例验证了该方法的可行性和有效性。

关键词: 奇异摄动系统, 镇定, 线性矩阵不等式

Abstract: In this paper,stabilization problem of singularly perturbed systems which are certain or uncertain is discussed.Firstly,stability conditions and upper bounds of perturbation parameter are given fitting to certain and uncertain systems.Furthermore,when system is unstable,the conditions for state-feedback-existing and controller-solving are given by linear matrix inequality,which can be derived by MATLAB.At last,the results of simulated examples show that the method is feasible and effective.

Key words: singularly perturbed systems, stabilization, linear matrix inequality

中图分类号: