计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (14): 58-59.DOI: 10.3778/j.issn.1002-8331.2009.14.016

• 研究、探讨 • 上一篇    下一篇

概念学习算法中的模糊集

傅 丽   

  1. 青海民族学院 数学系,西宁 810007
  • 收稿日期:2008-03-21 修回日期:2008-05-19 出版日期:2009-05-11 发布日期:2009-05-11
  • 通讯作者: 傅 丽

Fuzzy logic in concept learning algorithm

FU Li   

  1. Department of Mathematics,Qinghai Nationality College,Xining 810007,China
  • Received:2008-03-21 Revised:2008-05-19 Online:2009-05-11 Published:2009-05-11
  • Contact: FU Li

摘要: 概念学习可以形式化为寻找与训练实例最适合的可能假设的预定义空间,已有的多种算法(比如:Find-S、List-Then-Eliminate、candidate-Elimination等等)都是考虑Boolean-值(即{0,1})函数。用模糊集合的思想,把{0,1}-值函数扩展到[0,1]-值,[0,1]单位区间的每一个实数,都可以用于考虑概念学习算法,而且,可以用模糊距离和贴近度定义假设与训练实例之集的相容性。

关键词: 模糊集合, 概念学习, 训练实例, 假设空间, [0, 1]-值

Abstract: Concept learning can be formulated as a problem of searching through a predefined space of potential hypothesis the best fits the training examples,in presented several simple learning algorithms(such as,Find-S,List-Then-Eliminate,candidate-Elimination,and so on) which all consider Boolean-valued function,this paper extends Boolean-valued function to[0,1]-valued,it can be used the ideas of fuzzy logic,for every real number in[0,1],which can discuss all kinds of learning algorithms.It is defined hypothesis is consistent with a set of training examples by fuzzy distance.

Key words: fuzzy set, concept learning, training examples, hypothesis space, [0, 1]-valued