计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (17): 228-230.DOI: 10.3778/j.issn.1002-8331.2009.17.069
陈 蓓,曹文伦,张洪才
CHEN Bei,CAO Wen-lun,ZHANG Hong-cai
摘要: 提出了基于车牌分形维数特征进行复杂背景中车牌粗定位的方法。讨论了图像剪裁、灰度图转化以及图像增强时灰度转移函数的构造过程;给出了车牌图像分形维数的计算方法及车牌区域的确定。同时指出多车牌图像车牌区域的分形维数基本在2.65~2.80之间,其值高于车牌图像整体的分形维数,但是低于单车牌图像车牌区域的分形维数。该方法计算简单,不依赖车牌的颜色、形状、尺寸,具有极好的鲁棒性。通过对大量随机的实验图像进行计算表明:漏检率和误检率均为0,检出多于一个候选区域的为50%,正确检测率为100%。