计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (9): 49-50.DOI: 10.3778/j.issn.1002-8331.2010.09.015
• 研究、探讨 • 上一篇 下一篇
张 兰1,2,邢志栋1
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
ZHANG Lan1,2,XING Zhi-dong1
Received:
Revised:
Online:
Published:
Contact:
摘要: 在经典微粒群算法的基础上提出一种有较高收敛性能的智能算法:量子粒子群(QPSO)算法。并用于求解混合整数非线性规划问题。实验室证明QPSO算法收敛性能好、速度快,为求解混合整数非线性规划开辟了新途径。
关键词: 混合整数非线性规划(MNLP), 量子粒子群(QPSO), 粒子群(PSO)
Abstract: Quantum-behaved Particle Swarm Optimization(QPSO) developed on the basis of classical particle swarm optimization is a method with better convergence for mixed-integer nonlinear programming.Then the experimental results indicate that QPSO handles mixed-integer nonlinear programming problems much efficiently.It is a new way for solving mixed-integer nonlinear programming problem.
Key words: Mixed-integer NonLinear Programming(MNLP), Quantum-behaved Particle Swarm Optimization(QPSO), Particle Swarm Optimization(PSO)
中图分类号:
O24
张 兰1,2,邢志栋1. 基于量子粒子群求解混合整数非线性规划[J]. 计算机工程与应用, 2010, 46(9): 49-50.
ZHANG Lan1,2,XING Zhi-dong1. Quantum-behaved particle swarm optimization for mixed-integer nonlinear programming[J]. Computer Engineering and Applications, 2010, 46(9): 49-50.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/10.3778/j.issn.1002-8331.2010.09.015
http://cea.ceaj.org/CN/Y2010/V46/I9/49