计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (11): 175-177.DOI: 10.3778/j.issn.1002-8331.2009.11.053

• 图形、图像、模式识别 • 上一篇    下一篇

WTPCA和三阶近邻的人脸识别算法仿真

张俭鸽,刘洪波   

  1. 信息工程大学 电子技术学院 四系,郑州 450004
  • 收稿日期:2008-11-19 修回日期:2009-01-22 出版日期:2009-04-11 发布日期:2009-04-11
  • 通讯作者: 张俭鸽

Simulation of face recognition algorithm based on WTPCA and 3-neighbor classification

ZHANG Jian-ge,LIU Hong-bo   

  1. The Four Department of Institute of Electronic Technology,Information Engineering University,Zhengzhou 450004,China
  • Received:2008-11-19 Revised:2009-01-22 Online:2009-04-11 Published:2009-04-11
  • Contact: ZHANG Jian-ge

摘要: 目前,存在大量的人脸识别算法和人脸库,如何选择分类算法,如何选择训练集,成为人脸识别的一个关键问题。针对小波变换和主元分析的人脸识别算法,在Matlab6.5平台上,通过大量的仿真实验,根据计算速度和识别率得出,三阶近邻分类优于欧几里德分类,选择ORL人脸库的前8幅图像作为训练集优于其他情况。实验得出了最优情况下的特征脸库,及测试图像用平均脸图像和特征脸图像的线性表示。在人脸识别领域具有很强的应用价值。

关键词: 小波变换, 主元分析, 三阶近邻分类, 人脸识别, 仿真

Abstract: There are large numbers of face recognition algorithms and face databases,and how to select classified algorithms and training sets has become a sixty-four-dollar question of face recognition at present.In allusion to the face recognition algorithms of wave transform and principal component analysis,this paper demonstrates that the 3-neighbor classification is propitious to Euclid classification,and that selecting preceding 8 images of ORL as training sets is propitious to other instances through large numbers of simulative experimentation on the platform of Matlab6.5.The experiment educes eigen-face databases of best instances,and the linearity expression of the test images using average face images and eigen-face images.It has high applicable worthiness at the domain of face recognition.

Key words: wave transform, principal component analysis, 3-neighbor classification, face recognition, simulation