计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (33): 24-25.
• 博士论坛 • 上一篇 下一篇
高 浩,须文波,孙 俊
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
GAO Hao,XU Wen-bo,SUN Jun
Received:
Revised:
Online:
Published:
Contact:
摘要: 引入了一种广泛而实用的方法——基于量子行为的粒子群算法的理论应用于图像分割领域。QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。文章中把图像分割问题看成一个最优化问题,以最小误差法为例,对比了所提算法和标准粒子群算法在阈值处理中的性能,并用实验证明了所提算法的可行性。
关键词: 图像分割, 量子粒子群算法, 阈值, 最小误差法
Abstract: An opening and practical solution,that is Quantum-behaved Particle Swarm Optimization algorithm,is applied to image segmentation.Not only parameters of QPSO is few and randomicity of QPSO is strong,but also QPSO cover with all the space of solution and guarantee global convergence of algorithms.In this paper by selecting the minimum error as an experimental method,compare the QPSO’s ability in threshold-computation with the standard PSO,experiment results show that this method can completely satisfy the accuracy and speed’s requirement of the real-time system and provide a better effect on image segmentation.
Key words: image segmentation, QPSO, threshold, minimum error
高 浩,须文波,孙 俊. 量子粒子群算法在图像分割中的应用[J]. 计算机工程与应用, 2007, 43(33): 24-25.
GAO Hao,XU Wen-bo,SUN Jun. Image segmentation using Quantum-behaved Partical Swarm Optimization algorithm[J]. Computer Engineering and Applications, 2007, 43(33): 24-25.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I33/24