计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (19): 118-120.

• 网络、通信、安全 • 上一篇    下一篇

利用Lagrange支持向量回归机设计IDS的检测算法

张家超   

  1. 连云港职业技术学院 信息工程学院,江苏 连云港 222006
  • 收稿日期:2008-01-31 修回日期:2008-04-21 出版日期:2008-07-01 发布日期:2008-07-01
  • 通讯作者: 张家超

Supervisal algorithm design of IDS based on Lagrange Support Vector Regression

ZHANG Jia-chao   

  1. School of Information Engineering,Lianyungang Technical College,Lianyungang,Jiangsu 222006,China
  • Received:2008-01-31 Revised:2008-04-21 Online:2008-07-01 Published:2008-07-01
  • Contact: ZHANG Jia-chao

摘要: 为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量回归机的检测算法具有更良好的泛化性能、更快的迭代速度、更高的检测精度和更低的误报率。

Abstract: For improving classific precision of network intrusion detection model,reducing the number of training data set and learning time,Based on Support Vector Regression(SVR),a new supervisal algorithm using Lagrange Support Vector Regression(LSVR) is proposed.The experimental results using KDD CUP 1999 data set show that LSVR has better generalization ability,quicker iterative speed,higher detection accuracy,and lower error rate than SVR.