计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (3): 148-151.DOI: 10.3778/j.issn.1002-8331.2009.03.044

• 数据库、信号与信息处理 • 上一篇    下一篇

基于遗传算法的多属性模糊决策树的优化

周万里,邱洪泽,尹作海   

  1. 山东大学 计算机科学与技术学院,济南 250101
  • 收稿日期:2008-01-02 修回日期:2008-03-24 出版日期:2009-01-21 发布日期:2009-01-21
  • 通讯作者: 周万里

Optimization of fuzzy decision tree with multiattribute based on genetic algorithm

ZHOU Wan-li,QIU Hong-ze,YIN Zuo-hai   

  1. College of Computer Science,Shandong University,Jinan 250101,China
  • Received:2008-01-02 Revised:2008-03-24 Online:2009-01-21 Published:2009-01-21
  • Contact: ZHOU Wan-li

摘要: 决策树是数据挖掘中的一种高效方法,但是当训练数据的属性很多时,构建的决策树的规模会随属性个数增加而指数级增长,进而会产生海量的规则。针对该问题,提出了一种基于遗传算法的优化方法。首先根据信息增益利用轮盘赌方法选取若干组属性,构建多棵决策树,然后利用遗传算法对多棵决策树进行组合,并最终形成规则集。最后给出了实验结果,证明了该方法的可行性和有效性。

Abstract: Decision tree is a highly effective method in data mining.However,the number of decision tree node will be exponential growth with the increament of attributes.Therefore,there are too many rules when the number of attributes is large.To avoiding this problem,the paper presents an optimization method based on genetic algorithm.Firstly,choose some groups of attribute with roulette wheel method based on information gain,construct decision trees with these attributes,and then,genetic algorithm is used to recombine them.So the rule set could be created with the result of the combination.Finally,the results of the experiments indicate that the method is feasible and effective.