计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (19): 39-42.DOI: 10.3778/j.issn.1002-8331.2010.19.011
董国君,哈力木拉提·买买提
DONG Guo-jun,Halmuratm
摘要: 提出了一种基于随机退火机制的竞争层神经网络学习算法,并将其应用于解决图像特征绑定问题。该算法将竞争层神经网络的串行迭代模式改为随机优化模式,通过采用退火技术避免网络收敛到能量函数的局部极小点。通过理论分析证明了该算法与竞争层神经网络动力学方程的等价性。通过对比实验验证了算法能够在加快网络收敛速度的同时提高特征绑定结果的
合理性。
中图分类号: