计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (32): 9-11.
吴广潮1,2,邵壮丰1
WU Guang-chao1,2,SHAO Zhuang-feng1
摘要: 分析了利用支持向量回归求解多分类问题的思想,提出了一种基于局部密度比权重设置模型的加权最小二乘支持向量回归模型来单步求解多分类问题:该方法先分别对类样本中每类样本利用局部密度比权重设置模型求出每个样本的权重隶属因子,然后运用加权最小二乘支持向量回归算法对所有样本进行训练,获得回归分类器。为验证算法的有效性,对UCI三个标准数据集以及一个随机生成的数据集进行实验,对比了多种单步求解多分类问题的算法,结果表明,提出的模型分类精度高,具有良好的鲁棒性和泛化性能。