计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (5): 193-195.
• 工程与应用 • 上一篇 下一篇
赵玉霞 王克如 白中英 李少昆 谢瑞芝 高世菊
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
Received:
Revised:
Online:
Published:
摘要: 本研究根据锈病、弯孢菌病、灰斑病、小斑病及褐斑病等五种玉米病斑图像的实际情况,在图像分割和特征提取的基础上,利用朴素贝叶斯分类器的统计学习方法,实现玉米叶部病斑的分类识别。研究结果表明,对五种玉米叶部病害的诊断精度在83%以上。贝叶斯分类器具有网络结构简单、易于扩展等特点,对玉米叶部病害的分类识别效果较好,也为其它作物病害图像识别的研究提供了借鉴。
Abstract: A naive Bayesian classifier method is proposed to classify maize leaf disease according to five kinds of actual maize disease images, which are segmented and extracted feather from at first. The result shows that the precision of maize disease identifying is higher than 83%. Bayesian classifier is excellent at simple network structure and extending easily. It is effective for classifying maize disease and it can use for reference for the image recognition research on other crops.
赵玉霞 王克如 白中英 李少昆 谢瑞芝 高世菊. 贝叶斯方法在玉米叶部病害图像识别中的应用[J]. 计算机工程与应用, 2007, 43(5): 193-195.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I5/193