计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (4): 51-53.
• 学术探讨 • 上一篇 下一篇
夏桂梅 曾建潮
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
Received:
Revised:
Online:
Published:
摘要: 以保证全局收敛的随机微粒群算法SPSO为基础,本文提出了一种改进的随机微粒群算法----GAT-SPSO。该方法是在SPSO的进化过程中,以锦标赛选择机制下的遗传算法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。通过对三个多峰的测试函数进行仿真,其结果表明:在搜索空间维数相同的情况下,GAT-SPSO的收敛率及收敛速度均大大优于SPSO。
Abstract: Based on the stochastic particle swarm optimization algorithm that guarantees global convergence, an improved stochastic particle swarm optimization algorithm ---GAT-SPSO is proposed. During the evolution of SPSO, the best particle produced by genetic algorithm of tournament selection substitutes for the stopping particle and takes part in the evolution of next generation. Through the experiments of three multi-modal test functions, the result of simulation proves that the speed of convergence and the rate of convergence for GAT-SPSO are better than SPSO at the same dimension of search space.
夏桂梅 曾建潮. 基于锦标赛选择遗传算法的随机微粒群算法[J]. 计算机工程与应用, 2007, 43(4): 51-53.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2007/V43/I4/51