计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (1): 181-181.

• 数据库与信息处理 • 上一篇    下一篇

基于策略模式的特征选择算法工具库FSLS的设计

施佳,夏骄雄,张武   

  1. 上海大学计算机工程与科学学院
  • 收稿日期:2005-12-30 修回日期:1900-01-01 出版日期:2007-01-01 发布日期:2007-01-01
  • 通讯作者: 夏骄雄 jshardrom

The Design of Feature Selection Library based on Strategy-pattern (FSLS)

Jia Shi,Johnson Shardrom,Wu Zhang   

  1. 上海大学计算机工程与科学学院
  • Received:2005-12-30 Revised:1900-01-01 Online:2007-01-01 Published:2007-01-01
  • Contact: Johnson Shardrom

摘要: 在机器学习的研究中,特征选择对于提高学习机器的性能和效率具有重要的意义。各种特征选择算法的不断提出和应用,给各领域科研工作的实施带来极大的帮助,但是当前各种算法普遍存在着具体实现独立性较强、可扩展性差的问题,使得算法的使用者难以对多种算法的性能进行统一的对比评估,算法的替换和扩展工作量也相应较大。本文以面向对象的设计理念为指导,基于设计模式中的策略模式,提出了特征选择算法工具库FSLS(Feature Selection Library based on Strategy-pattern)的设计构想,通过将特征选择方法中一些常用的算法按照策略模式进行包装,以此方便机器学习算法用户的使用,同时确保算法工具库的本身具有较强的可扩展性。

Abstract: Feature selection is very important in improving the performance of learning systems. Various feature selection algorithms greatly facilitate the research of the scientists from different disciplines, however, there is a common problem that those algorithms are implemented by different researchers, so it is hard for the users to integrate or compare those independent implementations of different programming styles and incompatible designs. A feature selection library based on strategy-pattern (FSLS) is conceived to solve the above problem. The FSLS encapsulates many popular feature selection algorithms under unified interfaces, while different strategies of one algorithm could be exchanged conveniently. This library will bring great help to those machine-learning algorithms users. Meanwhile, the FSLS itself has good extensibilities, and new algorithm can be added into the library easily.