计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (19): 128-130.DOI: 10.3778/j.issn.1002-8331.2009.19.039

• 数据库、信息处理 • 上一篇    下一篇

小波包分解和模糊聚类下的基因表达数据分析

王新金1,张 华2,曹祥红1,崔光照1   

  1. 1.郑州轻工业学院 电气信息工程学院,郑州 450002
    2.河南工业大学 电气工程学院,郑州 450007
  • 收稿日期:2008-12-05 修回日期:2009-02-20 出版日期:2009-07-01 发布日期:2009-07-01
  • 通讯作者: 王新金

Wavelet packet decomposition-based on fuzzy clustering for gene expression data

WANG Xin-jin1,ZHANG Hua2,CAO Xiang-hong1,CUI Guang-zhao1   

  1. 1.School of Electrical and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China
    2.School of Electrical Engineering,Henan University of Technology,Zhengzhou 450007,China
  • Received:2008-12-05 Revised:2009-02-20 Online:2009-07-01 Published:2009-07-01
  • Contact: WANG Xin-jin

摘要: 针对基因表达数据中存在的噪声对聚类分析结果准确度的影响问题,提出了一种基于小波包分解的基因表达数据模糊聚类分析方案,介绍了理论根据和算法,给出了Matlab仿真结果,并与其他方法聚类的结果进行了比较。结果表明提出的方法能够减少传统聚类方法受到噪声影响的程度,能够挖掘出基因表达数据在时间上的行为特征,对与细胞周期调控有关的基因表达数据的聚类结果划分更为准确和细致。

Abstract: A wavelet packet decomposition based gene expression data clustering analysis scheme is put forward in order to reduce the noise inherent in the data.The theoretical foundation and algorithm is introduced.Results of Matlab are listed.Results of direct clustering and wavlet transform based denoise clustering are also listed for comparison.Those results show that the wavelet packet decomposion method can reduce background noise and mine the time character of gene expression so that the accuracy of cluster has been enhanced.This method is more useful for cell cycle regulated gene expression data clustering and can get more exact and detailed partitioning results.