计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (31): 90-92.

• 学术探讨 • 上一篇    下一篇

自适应变邻域混沌搜索微粒群算法

郏宣耀1,李 欢1,滕少华2   

  1. 1.宁波大红鹰职业技术学院 软件学院,浙江 宁波 315175
    2.清华大学 计算机科学与技术系,北京 100084
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-11-01 发布日期:2007-11-01
  • 通讯作者: 郏宣耀

Adaptive variable neighborhood chaos search PSO

JIA Xuan-yao1,LI Huan1,TENG Shao-hua2   

  1. 1.School of Software Engineering,Ningbo Dahongying Vocational Technology College,Ningbo,Zhejiang 315175,China
    2.Department of Computer Science & Technology,Tsinghua University,Beijing 100084,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-11-01 Published:2007-11-01
  • Contact: JIA Xuan-yao

摘要: 针对局部地形复杂、振荡强烈的函数优化精度难以提高的问题,提出一种自动调整邻域搜索范围和方向的自适应变邻域混沌搜索微粒群算法(AVNC-PSO)。优化初期首先由基本PSO算法进行粗调,当种群收敛于局部最优时,选择飞行停滞且聚集程度高的粒子向不同方向的邻域内进行混沌搜索,搜索方向和粒子偏移量根据粒子与收敛中心的距离和混沌变量的值共同确定。数值仿真表明,该算法能够使局部搜索更精确,有效改善基本PSO算法优化精度不高的弱点。

Abstract: An adaptive variable neighborhood chaos search PSO that can automatically adjust neighborhood range and direction is proposed for optimization of functions,which is with complex terrain and strong oscillation.Firstly optimize with standard PSO,when the particle swarm converges at local best solution,choose the particles that are stagnant and high extent convergence,and make them chaos search towards various directions in the neighborhood.Both the distance between particle and the convergence center and the chaos variable determine the direction and particle position offset.Simulation results show that this method makes higher precise of local optimization and can improve the algorithm performance effectively.