计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (5): 172-174.

• 数据库与信息处理 • 上一篇    下一篇

基于自劈分合并竞争学习的HMMs聚类方法

卢鸣 王世同   

  1. 江苏无锡市江南大学蠡湖校区
  • 收稿日期:2006-07-26 修回日期:1900-01-01 出版日期:2007-02-11 发布日期:2007-02-11
  • 通讯作者: 卢鸣

HMMs Clustering Approach Based on Self-Splitting and Merging Competitive Learning

  • Received:2006-07-26 Revised:1900-01-01 Online:2007-02-11 Published:2007-02-11

摘要: 隐马尔可夫模型(Hidden Markov Model) 是一种双随机过程,被广泛地应用于信号处理和模式识别中。但当将其应用于聚类时, 对隐马尔可夫模型的训练,即参数估计,是一个非常重要的问题,训练方法的优劣将对整个应用效果产生重要的影响。本文针对这一问题,将自劈分合并竞争学习运用于HMMs。实验结果证实了本文提出方法的有效性。

Abstract: Hidden Markov Model has been widely used as a valuable stochastic model. A novel clustering method based on both self-splitting and merging competitive learning and HMMs is proposed to improve the quality of the clustering. Experimental results show that our algorithm is very effective for such gene expression datasets.