计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (30): 157-161.
毛韶阳1,2,李肯立2
MAO Shao-yang1,2,LI Ken-li2
摘要: 针对微阵列基因表达数据聚类的高维复杂性,提出了一种基于密度的并行聚类算法,在APRAM模型的分布式存储系统中,通过欧几里德距离矩阵和密度函数两次时间复杂度为O(■)的计算,可使聚类过程的时间复杂度为O(■),以增加一次计算的代价来降低聚类过程的时间复杂度。基于8结点的机群计算实验表明:本算法能够达到较同类算法更高的并行加速比,提高高维生物数据的聚类速度。