计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (11): 145-146.DOI: 10.3778/j.issn.1002-8331.2009.11.044
• 数据库、信号与信息处理 • 上一篇 下一篇
桑应宾,刘琼荪
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
SANG Ying-bin,LIU Qiong-sun
Received:
Revised:
Online:
Published:
Contact:
摘要: 针对传统的k-近邻(k-nn)方法的缺点,将聚类中的K均值和分类中的k近邻算法有机结合,提出了一种改进的k-nn快速分类算法。实验表明该算法在影响分类效果不大的情况下能达到快速分类的目的。
Abstract: In order to overcome the disadvantages of traditional k-nn,this paper uses two algorithms of classification and clustering to proposes an improved k-nn classification algorithm.Experiments show that this algorithm can speed up when it has a few effects in accuracy.
桑应宾,刘琼荪. 改进的k-nn快速分类算法[J]. 计算机工程与应用, 2009, 45(11): 145-146.
SANG Ying-bin,LIU Qiong-sun. Improved k-nearest neighbor classification algorithm[J]. Computer Engineering and Applications, 2009, 45(11): 145-146.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/10.3778/j.issn.1002-8331.2009.11.044
http://cea.ceaj.org/CN/Y2009/V45/I11/145