计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (25): 222-224.DOI: 10.3778/j.issn.1002-8331.2008.25.067

• 工程与应用 • 上一篇    下一篇

基于粗糙集的决策树算法在体检系统中的研究

黄宇颖,杨 青,张连发,李俊薇   

  1. 华中师范大学 计算机科学与技术系,武汉 430079
  • 收稿日期:2007-10-16 修回日期:2008-01-18 出版日期:2008-09-01 发布日期:2008-09-01
  • 通讯作者: 黄宇颖

Research on decision tree algorithm based on rough set in medical system

HUANG Yu-ying,YANG Qing,ZHANG Lian-fa,LI Jun-wei   

  1. Department of Computer Science,Huazhong Normal University,Wuhan 430079,China
  • Received:2007-10-16 Revised:2008-01-18 Online:2008-09-01 Published:2008-09-01
  • Contact: HUANG Yu-ying

摘要: 基于粗糙集的理论全面考虑了分离属性每个划分对整个分类的贡献程度,把这些贡献度进行汇总,避免局部最佳效应。在此基础上结合变精度模型,用变精度近似精度来代替近似精度,提出了一种新的变精度分支汇总粗糙度的概念,把变精度分支汇总粗糙度作为属性选择标准构造决策树。既提高了属性选择的准确度又有效克服噪声数据的影响,使生成的决策树灵活泛化能力更强。将算法应用于武汉市康龙逸君健康体检中心的信息管理系统,经实际数据验证,该算法生成的决策树复杂度低,分类效果好。

关键词: 变精度, 分支汇总粗糙度, 决策树, 体检系统

Abstract: Based on the rough set theory,this paper considers the contribution of each partitional attributes to entire classification,and gathers the contribution to avoid local best effect.In this foundation,The authors can integrate variable precision model and replace approximate precision with variable approximate precision.Then offer a new concept of variable precision branch summarized roughness which is regarded as the criteria for choosing attributes when constructing a decision tree.It improves the accuracy of attribute selection,overcomes the impact of noise data effectively and strengthened generalization ability of the decision tree.The algorithm is applied in information management systems of Wuhan City KANG Long Yi-jun health examination centers.Actual data shows that the algorithm can offer low complexity and better classification results.

Key words: variable precision, branch summarized roughness, decision tree, medical system