计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (17): 122-124.DOI: 10.3778/j.issn.1002-8331.2009.17.037

• 数据库、信息处理 • 上一篇    下一篇

支持向量机和蚁群算法的网页分类研究

宋军涛1,周 铜2,杜庆灵1   

  1. 1.河南工业大学 信息科学与工程学院,郑州 450001
    2.中州大学,郑州 450052
  • 收稿日期:2008-12-29 修回日期:2009-03-02 出版日期:2009-06-11 发布日期:2009-06-11
  • 通讯作者: 宋军涛

Study of categorization of Web-page of support vector machine and ant colony algorithm

SONG Jun-tao1,ZHOU Tong2,DU Qing-ling1   

  1. 1.Department of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China
    2.ZhongZhou University,Zhengzhou 450052,China
  • Received:2008-12-29 Revised:2009-03-02 Online:2009-06-11 Published:2009-06-11
  • Contact: SONG Jun-tao

摘要: 网页分类技术是Web数据挖掘的基础与核心,是基于自然语言处理技术和机器学习算法的一个典型的具体应用。基于统计学习理论和蚁群算法理论,提出了一种基于支持向量机和蚁群算法相结合的构造网页分类器的高效分类方法,实验结果证明了该方法的有效性和鲁棒性,弥补了仅利用支持向量机对于大样本训练集收敛慢的不足,具有较好的准确率和召回率。

关键词: 网页分类, 蚁群算法, 支持向量机, 召回率, 准确率

Abstract: Web page categorization is the foundation and core problem of web data mining,it is a typical application based on technology of natural language processing and machine learning.It is imperative to find an effective and efficient method for web page categorization.In this paper,a new method is proposed for web page categorization based on ant colony optimization algorithm(ACOA) and support vector machines(SVMs).The experimental results show that the method is effective and robust,only to make up for the use of support vector machines for large sample training set less than the slow convergence with better precision and recall.

Key words: web page categorization, ant colony algorithm(ACA), support vector machine(SVM), recall, precision