计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (11): 46-48.DOI: 10.3778/j.issn.1002-8331.2010.11.014

• 研究、探讨 • 上一篇    下一篇

二值命题逻辑中的概率真度

于西昌1,谭桂梅2

  

  1. 1.聊城职业技术学院,山东 聊城 252000
    2.聊城大学 图书馆,山东 聊城 252059
  • 收稿日期:2008-10-15 修回日期:2008-12-25 出版日期:2010-04-11 发布日期:2010-04-11
  • 通讯作者: 于西昌

Probability truth degree of formulas in classical propositional logic

YU Xi-chang1,TAN Gui-mei2   

  1. 1.Liaocheng Vocational and Technical College,Liaocheng,Shandong 252000,China
    2.Library of Liaocheng University,Liaocheng,Shandong 252059,China
  • Received:2008-10-15 Revised:2008-12-25 Online:2010-04-11 Published:2010-04-11
  • Contact: YU Xi-chang

摘要: 将二值命题逻辑系统的真度概念引入到概率逻辑,定义了公式的期望,给出了反映公式之间内在联系的相关系数,研究了无限公式收敛时所遵循的规律及特点,引入了度量不确定性的特征值—熵。

关键词: 概率真度, 数学期望, 相关系数,

Abstract: The truth degree of classical propositional logic systems is introduced to probability logic,and the expectation of formula is given.Moreover,the correlation coefficient between formulas is studied;also the rules and the properties of infinite formula which is converging are studied.Finally,an entropy as the eigenvalue for metric uncertainty is defined.

Key words: probability truth degree, mathematical expectation, correlation coefficient, entropy

中图分类号: