摘要: 多模态生物医学图像配准在医疗诊断、治疗方案的制定,以及身体机能的研究等方面起到越来越大的作用。如何将这些多模态信息融合在一起是目前研究的重点,目前,该融合主要基于图像强度信息的配准方法。该类方法通过最大化化图像间的相似度函数达到配准的目的,但配准过程中使用往往会出现参数变化非凸且不光滑的现象,因而,传统的局部最优方法通常不能得到较好的结果。粒子群算法是一种全局寻优算法,但传统的方法中受初始值的选取以及当前全局最优点的影响,易陷入局部最优。本文对其进行改进,使得即使在初始值离准确值较远时也能得到全局最优,并将该方法用于多模态医学图像配准中,得到了较好的结果。