计算机工程与应用 ›› 2008, Vol. 44 ›› Issue (3): 198-201.
蔡东风,王智超,季 铎,张桂平
CAI Dong-feng,WANG Zhi-chao,JI Duo,ZHANG Gui-ping
摘要: 文本聚类是自然语言处理中的一项重要研究课题,主要应用于信息检索和Web挖掘等领域。其中的关键是文本的表示和聚类算法。在层次聚类的基础上,提出了一种新的基于边界距离的层次聚类算法,该方法通过选择两个类间边缘样本点的距离作为类间距离,有效地利用类的边界信息,提高类间距离计算的准确性。综合考虑不同词性特征对文本的贡献,采用多向量模型对文本进行表示。不同文本集上的实验表明,基于边界距离的多向量文本聚类算法取得了较好的性能。